Pyruvate kinase M2 phosphorylates H2AX and promotes genomic instability in human tumor cells
نویسندگان
چکیده
Pyruvate kinase (PK) catalyzes the conversion of phosphoenolpyruvate and ADP to pyruvate and ATP, a rate-limiting reaction in glycolysis. M2 isoform of PK (PKM2) is the predominant form of PK expressed in tumors. In addition to its well established cytosolic functions as a glycolytic enzyme, PKM2 displays nuclear localization and important nonmetabolic functions in tumorigenesis. Herein, we report that nuclear PKM2 interacts with histone H2AX under DNA damage conditions. Depletion of PKM2 decreased the level of serine 139-phosphorylated H2AX (γ-H2AX) in response to DNA damage. The in vitro kinase assay reveals that PKM2 directly phosphorylates H2AX at serine 139, which is abolished by the deletion of FBP-binding pocket of PKM2 (PKM2-Del515-520). Replacement of wild type PKM2 with the kinase dead mutant PKM2-Del515-520 leads to decreased cell proliferation and chromosomal aberrations under DNA damage conditions. Together, we propose that PKM2 promotes genomic instability in tumor cells which involves direct phosphorylation of H2AX. These findings reveal PKM2 as a novel modulator for genomic instability in tumor cells.
منابع مشابه
Redundant and nonredundant functions of ATM and H2AX in αβ T-lineage lymphocytes.
The ataxia telangiectasia mutated (ATM) kinase and H2AX histone tumor suppressor proteins are each critical for maintenance of cellular genomic stability and suppression of lymphomas harboring clonal translocations. ATM is the predominant kinase that phosphorylates H2AX in chromatin around DNA double-strand breaks, including along lymphocyte Ag receptor loci cleaved during V(D)J recombination. ...
متن کاملPKM2 Phosphorylates Histone H3 and Promotes Gene Transcription and Tumorigenesis
Tumor-specific pyruvate kinase M2 (PKM2) is essential for the Warburg effect. In addition to its well-established role in aerobic glycolysis, PKM2 directly regulates gene transcription. However, the mechanism underlying this nonmetabolic function of PKM2 remains elusive. We show here that PKM2 directly binds to histone H3 and phosphorylates histone H3 at T11 upon EGF receptor activation. This p...
متن کاملExtracellular Pyruvate Kinase M2 regulates tumor angiogenesis
Pyruvate kinase M2 (PKM2) has been studied for decades on its role in cancer metabolism. Re-cently, PKM2 is highlighted again for its new function: promoting gene transcription by acting as a pro-tein kinase. Moreover, the PKM2 levels in patient circulation have been used as a diagnostic marker formany types of cancers. However, it remains unclear whether PKM2 in blood circulati...
متن کاملPhosphorylation of H2AX at Ser139 and a new phosphorylation site Ser16 by RSK2 decreases H2AX ubiquitination and inhibits cell transformation.
Histone H2AX is a histone H2A variant that is ubiquitously expressed throughout the genome. It plays a key role in the cellular response to DNA damage and has been designated as the histone guardian of the genome. Histone H2AX deficiency decreases genomic stability and increases tumor susceptibility of normal cells and tissues. However, the role of histone H2AX phosphorylation in malignant tran...
متن کاملNonmetabolic functions of pyruvate kinase isoform M2 in controlling cell cycle progression and tumorigenesis
Pyruvate kinase catalyzes the rate-limiting final step of glycolysis, generating adenosine triphosphate (ATP) and pyruvate. The M2 tumor-specific isoform of pyruvate kinase (PKM2) promotes glucose uptake and lactate production in the presence of oxygen, known as aerobic glycolysis or the Warburg effect. As recently reported in Nature, PKM2, besides its metabolic function, has a nonmetabolic fun...
متن کامل